Chapter 7 Exercises

Exercise 1: Open the "7.2 Train Strike" model (on <u>http://bayesianrisk.com/models.html</u>). Enter the observations T= false in both parts of the model and run the model. Do the same for T=true, N=true and N=false. What can you conclude?

Exercise 2: In AgenaRisk create a BN with two Boolean nodes A and B. Make B the child of A and define the NPTs respectively as:

		A	False		True	
False	0.2	False		0.9		0.3
True	0.8	True		0.1		0.7

By running the resulting model with appropriate observations, construct an 'equivalent' version of the model in which A is the child of B.

Exercise 3: Use instantiations of the cause-consequence idiom and the measurement idiom to model the following uncertain scenario "Using good designers and good tools increases the quality of a product as is made clear by customer satisfaction surveys".

Exercise 4: Explain why the BN model of Figure 7.35 has 33 NPT entries in total.

Exercise 5: A, B and C are three rare medical conditions. A and B both have an incidence of about one in 1,000 people. In a large sample of patient data (about 600,000) it is discovered that every patient having condition A or B also has condition C and there are no instances of a patient having condition C without either A or B. Using this information construct an appropriate BN with nodes A, B, C. Are you confident that the BN is accurate? (Hint read this article: www.eecs.qmul.ac.uk/~norman/papers/ml_simple_example.pdf)